INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation

MAI

EXERCISES [MAI 3.12-3.13] EQUATIONS OF LINES

Compiled by Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. [Maximum mark: 7]

Complete the following table

Passing through	Parallel to	Equation of line
A(3,5)	$\vec{b} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$	$\vec{r} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \end{pmatrix}$
the origin	$\vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	
A(3,5)	x-axis	
A(3,5)	y-axis	
A(1,3,5)	$\vec{b} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$	$\vec{r} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$
the origin	$\vec{b} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$	
A(1,3,5)	x-axis	
A(1,3,5)	y-axis	
A(1,3,5)	z-axis	

2. [Maximum mark: 8]

Complete the following table

Passing through	Equation of line
A(3,5) and B(4,12)	$\vec{r} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \end{pmatrix}$
A(1,-4) and B(7,6)	
the origin and <i>B</i> (7,6)	
A(1,3,5) and B(2,10,7)	$\vec{r} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$
A(1,3,5) and B(0,5,3)	
the origin and <i>B</i> (2,10,7)	

^	[Maxim			4
3.	III/IIavim	าเเกา	mark.	1

(i) x-axis

Express the following 3D lines in the form $r = a + \lambda b$

(ii) y-axis

 	 	•••••

(iii) z-axis

		[IVI/AI C	5. 12-5. 15] LQU	TIONS OF LINES	
4.	[Maximum ma	ark: 6]			
	Determine wh	hether the line $ec{r}$	$=$ $\begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ pa	asses through	
		(ii) B(5,20)	` ' ` ' ' '		
5.	[Maximum ma	ark: 4]			
	Find a vector	equation of the l	ine passing thro	ugh (-1, 4) and (3,	, –1). Give your answer
	in the form r	= p + td, where t	$t \in \mathbb{R}$.		

6. [Maximum mark: 4]

The points P(-2, 4), Q(3, 1) and R(1, 6) are shown in the diagram below.

(a)	Find the vector PQ.	[2]

(b)	Find a vector equation for the line through R parallel to the line (PQ).	[2]

7. [Maximum mark: 4]

The line *L* passes through the origin and is parallel to the vector 2i + 3j.

- (a) Write down a vector equation for *L*.
- (b) Find the Cartesian equation of the line in the form y=mx

The diagram below shows a line passing through the points (1,3) and (6,5).

Find a vector equation for the line in the form $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + t \begin{pmatrix} c \\ d \end{pmatrix}$, where $t \in \mathbb{R}$

9. [Maximum mark: 6]

A vector equation of a line is $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} -2 \\ 3 \end{pmatrix}$, $t \in \mathbb{R}$.

Find the equation of this line in the form ax + by = c, where a, b, and $c \in Z$.

	ne passes through the point (4,–1). Its direction is perpendicular to the vector $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
Find	If the equation of the line in the form $ax + by = p$, where a , b and p are integers.
[Ma	ximum mark: 5]
	line L passes through the points A (3, 2, 1) and B (1, 5, 3).
The	\longrightarrow
The (a)	Find the vector \overrightarrow{AB} .
	Find the vector AB. Write down a vector equation of the line L in the form $r = a + tb$.
(a)	
(a)	
(a)	
(a)	Write down a vector equation of the line ${m L}$ in the form ${m r}={m a}+t{m b}$.
(a)	Write down a vector equation of the line ${\it L}$ in the form ${\it r}={\it a}+t{\it b}$.
(a)	Write down a vector equation of the line ${\it L}$ in the form ${\it r}={\it a}+t{\it b}$.

12 .	Maximum	mark.	/ 1
14.	IIVIAXIIIIUIII	IIIaik.	41

A vector equation for the line *L* is $r = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Which of the following are also vector equations for the same line *L*?

A.
$$r = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

B.
$$r = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + t \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
.

C.
$$r = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
.

D.
$$r = \begin{pmatrix} 7 \\ 5 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
.

13. [Maximum mark: 1]

Given the points A(1,1,1) B(2,2,2) C(5,5,5) D(4,5,6)

- (a) Find the vectors AB and BC and hence explain why A, B and C are collinear
- (b) Find the vector equation of the line AD

(c)	Find the	cosine	of the	angle	BAD
-----	----------	--------	--------	-------	-----

Time the essine of the angle 27.2

14.	[Maximum mark. 5]
	Calculate the acute angle between the lines with equations
	$r = \begin{pmatrix} 4 \\ -1 \end{pmatrix} + s \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $r = \begin{pmatrix} 2 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
15.	[Maximum mark: 5]
	Two lines L_1 and L_2 have these vector equations.
	$L_1: r = 2i + 3j + t(i - 3j)$ $L_2: r = i + 2j + s(i - j)$
	The angle between L_1 and L_2 is θ . Find the cosine of the angle θ .
16.	[Maximum mark: 6]
	The lines L_1 and L_2 have parametric equations
	$L_1: x = 1 + 2\lambda, \ y = 1 + 3\lambda, \ z = 1 - \lambda$ $L_2: x = 2 - \mu, \ y = 3 + 4\mu, \ z = 4 + 2\mu$
	Find the angle between $L_{\scriptscriptstyle 1}$ and $L_{\scriptscriptstyle 2}$.

17.	[Maximum	mark: 6	١;
11.	IIVIANIIIIUIII	IIIain. C	"

The vector equations of two lines are given below.

$$\mathbf{r}_1 = \begin{pmatrix} 5 \\ 1 \end{pmatrix} + s \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \quad \mathbf{r}_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

The lines intersect at the point P. Find the position vector of P.

 	 	 	٠.
 	 	 	٠.
 	 	 	٠.

18. [Maximum mark: 6]

The lines I_1 and I_2 have equations

$$r_1 = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$$
 and $r_2 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$

respectively, where λ and μ are parameters.

- (a) Show that I_1 passes through the point (2, -7, 4).
- (b) Determine whether the lines l_1 and l_2 intersect.

19.	[Maximum]	mark.	101

Consider the lines L_1 : $\vec{r} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ and L_2 : $\vec{r} = \begin{pmatrix} -2 \\ 20 \end{pmatrix} + \mu \begin{pmatrix} 7 \\ -1 \end{pmatrix}$

Sh	ow that the lines are perpendicular.
Fin	d the point of intersection of the two lines.
−in	d the Cartesian equations of the two lines in the form $ax + by = c$
Sol	ve the simultaneous equations in (c)
••••	

20.	[Maximum	mark.	71
4 0.	IIVIAXIIIIUIII	IIIain.	1

Consider the lines
$$L_1$$
: $\vec{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ and L_2 : $\vec{r} = \begin{pmatrix} 2 \\ 9 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$

	.	tersect.		
ind the point				
ind the angle	e between th	e two lines.		

21.	[Maximum	mark:	61
	IIVIANIIIIAIII	minum.	~

The line L_1 is represented by $\mathbf{r}_1 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the line L_2 by $\mathbf{r}_2 = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}$.

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

22. [Maximum mark: 6]

The vector equations of the lines L_1 and L_2 are given by

$$L_1$$
: $r = i + j + k + \lambda(i + 2j + 3k)$; L_2 : $r = i + 4j + 5k + \mu(2i + j + 2k)$.

The two lines intersect at the point P. Find the position vector of P.

	ntersection of the lines (AB) and (CD).
	ximum mark: 5]
Poir	ximum mark: 5] nt A(3, 0, –2) lies on the line ${m r}=3{m i}-2{m k}+{m \lambda}(2{m i}-2{m j}+{m k})$, where ${m \lambda}$ is a real para
Poir	ximum mark: 5]
Poir	ximum mark: 5] nt A(3, 0, –2) lies on the line ${m r}=3{m i}-2{m k}+{m \lambda}(2{m i}-2{m j}+{m k})$, where ${m \lambda}$ is a real para
Poir	ximum mark: 5] nt A(3, 0, –2) lies on the line ${m r}=3{m i}-2{m k}+{m \lambda}(2{m i}-2{m j}+{m k})$, where ${m \lambda}$ is a real para
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $r = 3i - 2k + \lambda(2i - 2j + k)$, where λ is a real paradithe coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, where λ is a real parall the coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, where λ is a real parallel the coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, where λ is a real parallel the coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, where λ is a real parallel the coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $r = 3i - 2k + \lambda(2i - 2j + k)$, where λ is a real parallel the coordinates of one point which is 6 units from A, and on the line.
Poir	ximum mark: 5] Int A(3, 0, -2) lies on the line $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, where λ is a real parallel the coordinates of one point which is 6 units from A, and on the line.

The	/ and (OD) is a surroundicular to /
is on	L, and (OR) is perpendicular to L.
(a)	Write down the vectors \overrightarrow{AB} and \overrightarrow{OR} .
(b)	Use the scalar product to find the coordinates of R.
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line I . Find an equation of line I , giving the answer in parametric form.
Con	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line I .
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form.
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form.
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form.
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	sider the points A $(1, 3, -17)$ and B $(6, -7, 8)$ which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	sider the points A (1, 3, -17) and B (6, -7 , 8) which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	sider the points A (1, 3, -17) and B (6, -7 , 8) which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	sider the points A (1, 3, -17) and B (6, -7 , 8) which lie on the line <i>I</i> . Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.
Cons (a)	Find an equation of line <i>I</i> , giving the answer in parametric form. The point <i>P</i> is on <i>I</i> such that \overrightarrow{OP} is perpendicular to <i>I</i> . Find the coordinates of P.

27.	[Maximum	mark.	141
4 1.	IIVIAAIIIIUIII	main.	141

The line *L* has vector equation $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

The coordinates of a point P on L are of the form P (2+2 λ , λ , 3+2 λ)

- (a) Determine whether the following points lie on *L*: (i) *A* (8,3,8) (ii) *B* (8,3,9). [2]
 (b) Find two points on *L*, 6 units far from *B*. [4]
 (c) Find two points on *L*, √89 units far from the origin. [4]
- (d) Find two points on L, $\sqrt{54}$ units far from C(1,0,2). [4]

•••••	 	
	 •••••	

 •	 	 	

20	Maximum	mark:	71
28.	[Maximum	mark.	71

The line *L* has vector equation $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$. The point D (0,1,0) does not lie on *L*.

The coordinates of a point P on L are of the form $P(2+2\lambda, \lambda, 3+2\lambda)$.

	Find the distance between the line L and the point D . The point D' is the reflection of D in the line L . Find the coordinates of D' .
•	
•	

29.	[Maximum mark: 6+6]	
	The line <i>L</i> is given by the parametric equations $x = 1 - \lambda$, $y = 2 - 3\lambda$, $z = 2$.	
	Find the coordinates of the point on L that is nearest to the origin.	
	Use two different methods.	
	METHOD A (use the fact that the vector OP is perpendicular to the line).	[6]
	METHOD B (use the formula of the distance d and then differentiation).	[6]

30.	[Maximum mark: 9]					
	The	line L has vector equation				
		$\vec{r} = 5\vec{i} + 9\vec{j} + 6\vec{k} + t(\vec{i} + 2\vec{j} + 2\vec{k})$ where <i>t</i> is a scalar.				
	(a)	Find the coordinates of the point on line L which is nearest to point A(0, 2, 2).	[5]			
	(b)	Calculate the shortest distance from the point $A(0, 2, 2)$ to the line.	[2]			
	(c)	The point A is reflected in line L . Find the coordinates of the image A'.	[2]			

31.	[Maximum	mark.	81
U I .	IIVIANIIIIUIII	man.	\sim 1

Two lines
$$L_1$$
 and L_2 are given by $\mathbf{r}_1 = \begin{pmatrix} 9 \\ 4 \\ -6 \end{pmatrix} + s \begin{pmatrix} -2 \\ 6 \\ 10 \end{pmatrix}$ and $\mathbf{r}_2 = \begin{pmatrix} 1 \\ 20 \\ 2 \end{pmatrix} + t \begin{pmatrix} -6 \\ 10 \\ -2 \end{pmatrix}$.

- (a) Let θ be the acute angle between L_1 and L_2 . Show that $\cos \theta = \frac{52}{140}$. [3]
- (b) (i) P is the point on L_1 when s = 1. Find the position vector of P.
 - (ii) Show that P is also on L_2 .
- (c) A third line L_3 has direction vector $\begin{pmatrix} 6 \\ x \\ -30 \end{pmatrix}$. If L_1 , L_3 are parallel, find the value of x. [2]

[3]

B. Paper 2 questions (LONG)

32. [Maximum mark: 18]

The following diagram shows a solid figure ABCDEFGH. Each of the six faces is a parallelogram.

The coordinates of A and B are A (7, -3, -5), B(17, 2, 5).

(i)
$$\overrightarrow{AB}$$
;

(ii)
$$\overrightarrow{AB}$$
.

[4]

The following information is given. $\overrightarrow{AD} = \begin{pmatrix} -6 \\ 6 \\ 3 \end{pmatrix}, |\overrightarrow{AD}| = 9, \overrightarrow{AE} = \begin{pmatrix} -2 \\ -4 \\ 4 \end{pmatrix}, |\overrightarrow{AE}| = 6$

- (b) (i) Calculate
- (a) $\overrightarrow{AD} \cdot \overrightarrow{AE}$
- (b) $\overrightarrow{AB} \cdot \overrightarrow{AD}$
- (c) $\overrightarrow{AB} \cdot \overrightarrow{AE}$
- (ii) Hence, write down the size of the angle between any two intersecting edges [5]
- (c) Calculate the volume of the solid ABCDEFGH.

[2]

(d) The coordinates of G are (9, 14, 12). Find the coordinates of H.

[3]

(e) The lines (AG), (HB) intersect at point P. Find the acute angle at P.

[4]

.....

33. [Maximum mark: 13]

The diagram below shows a cuboid (rectangular solid) OJKLMNPQ.

The vertex O is (0, 0, 0), J is (6, 0, 0), K is (6, 0, 10), M is (0, 7, 0) and Q is (0, 7, 10).

- (a) Find in the form r = a + tb the equations of lines: (i) (JQ) (ii) (MK) [6]
- (b) Find the acute angle between (JQ) and (MK). [2]
- (c) The lines (JQ) and (MK) intersect at D. Find the position vector of D. [5]

34. [Maximum mark: 13]						
Points A, B, and C have position vectors $4\mathbf{i} + 2\mathbf{j}$, $\mathbf{i} - 3\mathbf{j}$ and $-5\mathbf{i} - 5\mathbf{j}$. Let D be a point						
	the 3	c-axis such that ABCD forms a parallelogram.				
	(a)	(i) Find \overrightarrow{BC} . (ii) Find the position vector of D.	[4]			
	(b)	Find the angle between \overrightarrow{BD} and \overrightarrow{AC} .	[4]			
	The	line L_1 passes through A and is parallel to $i + 4j$.				
	The	line L_2 passes through B and is parallel to $2\boldsymbol{i}+7\boldsymbol{j}$.				
	A ve	ector equation of L_1 is $r = (4\mathbf{i} + 2\mathbf{j}) + s(\mathbf{i} + 4\mathbf{j})$.				
	(c)	Write down a vector equation of L_2 in the form $r = b + tq$.	[1]			
	(d)	The lines L_1 and L_2 intersect at the point P. Find the position vector of P.	[4]			

35.	[Maximum	mark:	141
.	[IVIAXIIIIAIII	man.	

The point O has coordinates (0, 0, 0), point A has coordinates (1, -2, 3) and point B has coordinates (-3, 4, 2).

- (a) (i) Find \overrightarrow{AB} (ii) Find \overrightarrow{BAO} . [5]
- (b) The line L_1 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix}$.

Write down the coordinates of two points on L_1 .

[2]

[2]

- (c) The line L_2 passes through A and is parallel to \overrightarrow{OB} .
 - (i) Find a vector equation for L_2 , giving your answer in the form r = a + tb.
 - (ii) Point C (k, -k, 5) is on L_2 . Find the coordinates of C. [5]
- (d) The line L_3 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix} + p \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$, and passes through the point C.

Find the value of p at C.

36.

[Max	kimum	mark: 15]		
Thre	e of th	ne coordinates of the parallelogram STUV are S(-2, -2), T(7, 7), U(5, 15).		
(a)	a) Find the vector \overrightarrow{ST} and hence the coordinates of V.			
(b)		a vector equation of the line (UV) in the form $r = p + t\mathbf{d}$ where $t \in \mathbb{R}$.	[2]	
(c)	Shov	w that the point E with position vector $\begin{pmatrix} 1 \\ 11 \end{pmatrix}$ is on the line (UV), and find the		
	value	e of t for this point.	[2]	
The	The point W has position vector $\begin{pmatrix} a \\ 17 \end{pmatrix}$, $a \in \mathbb{R}$.			
(d)	(i)	If $ \overrightarrow{\mathrm{EW}} = 2\sqrt{13}$, show that one value of a is -3 and find the other possible value of a .		
	(ii)	For $a = -3$, calculate the angle between \overrightarrow{EW} and \overrightarrow{ET} .	[7]	

37.	'. [Maximum mark: 16]					
	Points P and Q have position vectors $-5i + 11j - 8k$ and $-4i + 9j - 5k$ respectively, and					
	both lie on a line L_1 .					
	(a)	(i) Find \overrightarrow{PQ} .				
		(ii) Hence show that the equation of L_1 can be written as				
		r = (-5 + s) i + (11 - 2s) j + (-8 + 3s) k.	[4]			
	The	point R $(2, y_1, z_1)$ also lies on L_1 .				
	(b)	Find the value of y_1 and of z_1 .	[3]			
	The	line L_2 has equation $r = 2i + 9j + 13k + t(i + 2j + 3k)$.				
	(c)	The lines L_1 and L_2 intersect at a point T. Find the position vector of T.	[5]			
	(d)	Calculate the angle between the lines L_1 and L_2 .	[4]			

38.	[Maximum mark: 19]					
	The	position vector of point A is $2i+3j+k$ and the position vector of point B is $4i-5j+21k$				
	(a)	(i)	Show that $\overrightarrow{AB} = 2i - 8j + 20k$.			
		(ii)	Find the unit vector u in the direction of \overrightarrow{AB} .			
		(iii)	Show that u is perpendicular to $\overrightarrow{\mathrm{OA}}$.	[6]		
	Let S	S be th	ne midpoint of [AB]. The line L_1 passes through S and is parallel to $\overrightarrow{\mathrm{OA}}$.			
	(b)	(i)	Find the position vector of S.			
		(ii)	Write down the equation of L_1 .	[4]		
	The	line L_2	has equation $r = (5i + 10j + 10k) + s(-2i + 5j - 3k)$.			
	(c)	Expl	ain why $L_{\scriptscriptstyle 1}$ and $L_{\scriptscriptstyle 2}$ are not parallel.	[2]		
	(d)	The	lines L_1 and L_2 intersect at the point P. Find the position vector of P.	[7]		

39. [Maximum mark: 22]

The lines l_1 and l_2 have vector equations

$$r_1 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
 and $r_2 = \begin{pmatrix} 4 \\ 4 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

respectively, where λ and μ are parameters

resp	CLIVE	sty, where κ and μ are parameters.	
(a)	Find	the acute angle between I_1 and I_2 .	[2]
(b)	Find	the acute angle between I_1 and z -axis.	[2]
(c)	Find	the coordinates of the point of intersection of I_1 and I_2 .	[4]
(d)	Find	the reflection of point A(1,4,3) in line I_2 .	[5]
(e)	Find	the reflection of line I_1 in line I_2 .	[2]
Let	$oldsymbol{d}_{\scriptscriptstyle I}$ an	d d_2 be the direction vectors of the two lines.	
(f)	(i)	Dhow that $ d_1 = d_2 $.	
	(ii)	Write down the vectors $d_1 + d_2$ and $d_1 - d_2$.	
	(i)	Hence find the equations of the two bisector lines between I_1 and I_2 .	[7]

 ••••

10.	[Maximum mark: 17]					
		triangle ABC has vertices at the points A(-1 , 2, 3), B(-1 , 3, 5) and C(0 , -1 , 1).				
	(a)	Find the size of the angle θ between the vectors \overrightarrow{AB} and \overrightarrow{AC} .	[4]			
	(b)	Hence, or otherwise, find the area of triangle ABC.	[2]			
	Let /	l_1 be the line parallel to \overrightarrow{AB} which passes through D(2, -1, 0) and l_2 be the line				
	para	allel to \overrightarrow{AC} which passes through E(-1, 1, 1).				
	(c)	(i) Find the equations of the lines l_1 and l_2 .				
		(ii) Hence show that l_1 and l_2 do not intersect.	[5]			
	(d)	Find the shortest distance between l_1 and l_2 .	[6]			

11.	[Maximum mark: 14]			
	Cons	sider the points A(1, −1, 4), B(2, − 2, 5) and O(0, 0, 0).		
	(a)	Calculate the cosine of the angle between \overrightarrow{OA} and \overrightarrow{AB} .	[5]	
	(b)	Find a vector equation of the line L_1 which passes through A and B.	[2]	
	The	line L_2 has equation $r = 2i + 4j + 7k + t(2i + j + 3k)$, where $t \in \mathbb{R}$.		
	(c)	Show that the lines L_1 and L_2 intersect and find the coordinates of their point of		
		intersection.	[7]	